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This paper is concerned with the numerical approximation by linite differences of the model 
problem -a” + a(x) u’ + b(x) u = 6(x - y), 0 <x c 1, fixed y E (0, l), u(O) = u( 1) = 0. High- 
order 3-point schemes are constructed using a general framework of Lynch and Rice (Math. 
Comp. 34 (1980), 333-372) and Doedel (SIAM J. Numer. Anal. 15 (1978), 450-465). It is 
shown that by making modifications on those mesh intervals containing the singular point y 
one can easily construct difference schemes of arbitrarily high order. The appropriate 
modifications involve information about the local Green’s function, for which a nonstandard 
perturbation-like series representation is derived. A complete discretization error analysis is 
given, and numerical experiments exhibiting convergence rates up to and including 6th order 
(even when the singular-point is not a mesh point) are reported. 0 1986 Academic Press, Inc 

1. INTRODUCTION 

In the numerical simulation of oil reservoirs, one is led to consider steady state 
differential equations of the form Lu =f, where f can contain a finite number of 
point S0urce.r (Dirac delta functions) that model the injection and recovery wells in 
the field (cf. [S]). Various approaches to handling the numerical difficulties that 
such singular functions present are discussed in [4, 6, 7, 9, lo]. Typically, one tries 
to use a weak formulation or subtract the singularity (or both). Even many linite- 
difference codes change to a finite-element formulation in the neighborhood of the 
wells to cope with the problem of singular sources. 

It is the purpose of this paper to show how to construct compact finite-difference 
schemes of arbitrarily high order for a model l-dimensional problem with a single 
point source. The extension to a finite number of such terms is immediate. We con- 
sider the linear 2-point boundary value problem 

L[u] E --UN + u(x) u’ + b(x) u = 6(x-y), 0-cx-c 1, fixed yE(O, 1) 

u(0) = u( 1) = 0. 
(1.1) 

It is assumed that the coefficient functions a and b are sufficiently smooth and such 
that the problem (1.1) is well posed, i.e., L[u] = 0 and u(0) = u( 1) = 0 imply u = 0. 
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In this case, the solution of (1.1) is the Green’s function for L, with zero end-point 
conditions. 

The difference schemes are constructed by using a general finite-difference 
framework of Lynch and Rice [S] and Doedel [2]. Away from those mesh inter- 
vals containing the singular point y, high order approximations to Lu = 0 are con- 
structed by making the scheme exact on spaces of polynomials. For those (at most 
2) subintervals containing y, modifications to the difference scheme must be made. 
These require information about the local Green’s function for L. We derive a per- 
turbation-like series in ascending powers of the mesh spacing h for this function; the 
component functions of this series are higher and higher order piecewise polynomial 
functions. By forcing the finite-difference scheme to be exact on an appropriate 
number of these local approximating functions, any desired order of global dis- 
cretization error can be attained. 

In the following sections, the theory and application of this approach are laid 
out. Low order (O(h2) and O(h4)) schemes are derived by hand, and an automated 
approach to constructing high-order schemes is presented and analyzed. In the dis- 
cretization error analysis, the general stability results of Esser [S] are utilized. 

2. THE OPTIMAL ~-POINT SCHEME 

There is a 3-point difference equation that the true solution of (1.1) satisfies exac- 
tly. This can be derived as follows. For simplicity, we give a uniform partition of the 
interval [0, 11: xi= ih, i= 0 ,..., n, where h = l/n. Consider a pair of adjacent sub- 
intervals (x, ~ 1, xi + , . ) Suppose that y 4 (xi-, , xi+ ,). Then on this subinterval u 
satisfies 

LCulb) = 0, xj- 1 <x<Xi+l 

(2.1) 
U(Xi-l)=Uj-l 4xi+I)=4+l? 

Now if the coefficient functions a and b are continuous on [0, 11, then all of 
these subproblems will be well posed for h sufficiently small. Let si and t, be a local 
basis for the null space of L satisfying 

L[Si](X) = L[ti](x) =o, Xi-l<X<Xj+l 

s;(x,- ,) = 1 ti(Xi-I)=0 

si(xi+l)=o ti(xi+l)= l, 

Then for XE (xi- r, x I+ r ), the solution u of (2.1) has the representation 

(2.2) 

U(X) = Ui- ISi + Ujf 1 tj(X). 
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The homogeneous 3-point difference equation satisfied by u is obtained from this by 
evaluation at x = xi producing 

OZf-IUi-l+Ui+OZ~~Uj+I = 0, 

where ~if-i 5 -si(xi) and a:, = -t,(xi). 
In the case where the subinterval (xi-, , xi+ i ) contains the singular point y, then 

u admits the representation 

u(x) = uj- Isi + ui+ 1 ?dx) + &TAX, .Y), 

where gi is the local Green’s function for L on (xi- i, xi+ [) with zero endpoint con- 
ditions, i.e., gi satisfies 

(2.3) 

And we get the 3-point difference equation 

Combining these we have the exact 3-point rule 

satisfied by the true solution of ( 1.1). 
It is not hard to show that the system (2.4) is nonsingular for all h sufficiently 

small and thus serves to uniquely determine the mesh values of U. We now show 
that any consistent 3-point discretization of L must be such that these optimal dif- 
ference coefficients, aif-, and LY$, are approached in the limit as h + 0 at a rate 
proportional to the local truncation error. 

Thus we consider, for i= l,..., n - 1, a general 3-point discretization of the form 

L~C~li~~cri.~~~~xi-~~+cri,~~~xi~+~i,~~~xi+l~ (2Sa) 

and an associated identity expansion of the form 

rhC$liEBi,lIcl(ti,I) + ‘*’ +Pi,JIL(ti,J). (2.5b) 

Here the weight pi.1 ,..., pi,J are assumed to be bounded independent of h and to 
satisfy /Ii,, + f . . + j?i,J = 1, and the auxiliary points Lji,i ,..., t;i,J are assumed to be dis- 
tinct and satisfy l<i,i-~il = O(h), j= l,..., J, uniformly in i. For such a scheme we 
define the local truncation error 

ThC41iE LhCdli-zhCLC411i7 i= 1 ,..., n - 1. 
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The difference scheme (Ah, Ih) is said to be consistent with L if /I Th[~] // o. -+ 0 as 
h -+ 0 for all smooth functions 4; it is said to be consistent of order p if /I Th[qS] 11 cc = 
O(P). We have the following. 

PROPOSITION 2.1. Let the difference scheme (Lh, Ih) in (2.5) and differential 
operator L in (1.1) be consistent of order p, some p > 1. Then the dlyference coef- 
ficients tl,,-l, cli,Oy and cli,l of Lh and the optimal difference coefficients cl:-, and a:, 
in (2.4) satisfy 

@LO =$(1+0(h)) uniformly in i. 

This follows by applying the truncation operator T/, tO d(X) E (X-Xi- ,)(X-Xi+ 1): 

T/tC41,= -h*ui,o- i fli,~LCdl(<i,~) 
j=l 

= -h’a;,o + 2 - C Bi.jCa(Si,j) 4’Cli.j) + b(t,j) d(<i,j)I 
j=I 

Now, let si and ti again denote the null basis elements for L on (xi- ,, xi+ ,) as in 
(2.2). Then hsi and hti can be bounded together with their derivatives up to any 
finite order (granted sufficient smoothness) independently of h and i. And we have 

-2-..- ai -1 a* 

ui.O I,- 
1 =~(,j,-,+,i,O’(-~:,)) 

1.0 

=$ (c(i,-,Si(xi- 1) + cI,,Osi(xi) + cIi,lsi(xi+ 1)) 

60 

=$ T,cs,7,=; (I+ O(h))+ O(hP) 
1.0 

= O(hP+‘). 

The second half of the proposition follows from similar consideration of the basis 
element t,. 1 

So we have a characterization (up to normalization) of what are the optimal dif- 
ference coefficients and inhomogeneous term for a discretization of (1.1). It is this 
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discretization, (2.4), that we should strive to emulate. The construction of high- 
order coefficients a,- r, ~l~,~, and ai,r depends only on the homogeneous equation 
Lu = 0 (i.e., on the differential operator) and not on the source function f; it offers 
no great difftculty. However, we must come up with a compatibly high order 
approximation to the local Green’s function gi(xi, y). We take up this issue now. 

3. AN EXPANSION FOR THE LOCAL GREEN'S FUNCTIONS 

Let (xi- 1, xi+ 1) be a singular subinterval, i.e., y E (xi- 1, xi+ 1 ). Let g denote the 
local Green’s function gi(xi, *) regarded as a function of its second argument, i.e., 
g(x)=gi(xi,x)l xi-l<x<xi+I. Then g is uniquely determined by (cf. [ 111) 

L+[g](x)= -g”- (a(x) g)‘+b(x) g=o, xi- 1 <x < xi, xi<x<xi+l 

~(xi-l)=~(xi+l)=o 

g(xT) - g(x,7) =o 

g/(x’)- g’(x,)= -1. 

We wish to construct a series for g in ascending powers of the mesh width h. To this 
end we introduce the stretching transformation 2 = (x - xi)/h, which produces the 
problem 

h2. Z+[g] - -2” - ha(x,+ h2) g’ + P(b - U’)(Xi + h?) g = 0, 

-1<1<0, O<Z<l 

d(-1)=2(1)=0 

g(O+)-g(O-)=0 

g’(o+) - $(O-) = 4. 

Seek 8 in the form 

g=g,lz+g*l?+ . . . . 

Substituting this expansion into the differential equation above, expanding a and b 
about h = 0, and balancing like powers of h produces the series of problems 

h: -g;=(), -1<1<0, 0<1<1 

2,(-l)=g,(l)=o 

gl(o+)-g1(0-)=0 

g;(O+) - &(O-)= -1; 

581/64/Z-14 
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h2: -2; = a(x,) g;, -l<P<O, 0<1<1 

&(-l)=,g,(l)=O 

g2(0+)-g*(0- )=O 

g;(O+)-&(O-)=0 

Solving the first two problems gives g,(Z)-Ctf(l - 120 and g2(X) = 
$a(xi) Z( ),?I- 1). Notice that the conditions at 2 = 0 are superfluous beyond the first 
(O(h)) problem. Notice also that ii is an even CO-linear spline, with knot at 2 = 0, 
that vanishes at 1= +l and g2 is an odd Cl-quadratic spline, also with knot at zero 
and vanishing at + 1. It can be shown by induction that the function 2, is a Cm-’ 
spline of order m with a single knot at 2 = 0; it vanishes at 1= f 1 and is an even 
function (with respect to the point 2 = 0) if m is odd and an odd function if m is 
even. 

We thus see that formally the local Green’s function gi(xi, .) can be expanded in 
a series of ascending powers in h whose component functions are higher and higher 
order spline functions with knots at x = x,. In fact, this series is asymptotic 
(provided a and b are smooth enough). We prove this now. 

THEOREM 3.1. Let the coefficient functions a and b satisfy a E Cpp ‘[x,+, , xi+ ,] 
and b E Cpp ‘[xi-, , xi+ 1]. Then the asymptotic representation 

g(i) = hg,(Z) + ... + hPgp(2) + Fp(.E; h) (3.1) 

is valid in the sense that Ilzt[Fp] I( m < Chp-’ and ll?ppll m Q Chp+ ‘, as h -+ 0. 

Proof Under the assumptions on a and 6, we have from Taylor’s formula 

a(x, + h.?) = a(x,) + a’(x,) 2-h + . . + acpp “(xi) &hpm2 

+ a(p-l)(x, + hf,(l)) & hP- ’ 

and 

(b-a’)(s,+hZ)=(b-a’)(x,)+ ... +(b(p-22)-a(p~1))(xi+h~2(Z)) &hpp2. 

Using the expansions above for a and b-a’ together with the conditions satisfied 
by g, ,..., g, we get 

h2 ll,?t[rp]ll, <chP+’ as h-+0, 

and the result follows from the stability of the differential operator h2Et. 1 
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We make note of the fact that a representation similar to the one above but 
treating the local Green’s function gi as a function of its first argument could just as 
easily have been constructed. It would consist of higher and higher order splines 
with knots at the singular point y. It would have the advantage of using the original 
differential operator L instead of the adjoint Lt (and thereby not requiring a’(x)), 
but it would have the disadvantage of losing some of the symmetry of our construc- 
tion: the alternating oddness and eveness of the spline functions and the location of 
the knot at a mesh point. The adjoint formulation that we have employed provides 
a cleaner construction and saves some numerical effort in the automated procedure 
of Section 5. 

4. LOW-ORDER SCHEMES 

We now use the observations of the previous sections to construct explicit O(P) 
and O(h4) discretizations of (1.1). For the first scheme, we can use standard central 
differences combined with the leading order term in the local expansion of gi(x,, y). 
Define the difference operator Lb’) and approximate local Greens function Gil) by 

where 

-1 a. 
cpl E---1 

h2 2h 

.!l),L+b- 190 h2 ’ 

aiyz-I+a, 
h2 2h’ 

and 

Gi’)(xi, y) = $(h - J y -xii). 

Here ai z a(~,), bi 5 b(xi), and so on. Then an O(h2) discretization of (1.1) is given 
by 

Ljj)[ U] = 0, Y$(Xi--1,Xi+l)3 

= a#G!“(x. y) , I 1) 3 y E (xi- 1, xi+ 1), i = l,..., n - 1, (4.1) 

u,= u,=o. 
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To construct an O(h4) approximation to our problem, we first require the finite 
difference coefficients of an O(h4) scheme for Lu = f with smooth J: Such a scheme, 
for uniform mesh spacing, is given by the following, which is due to Chawla [ 11: 

where 

and 

This scheme was derived by seeking a discretization in the assumed form above and 
then choosing cr!*? r ,..., /?I:) to make it locally exact on the collection of polynomials 
of degree 4 subjict to the normalization pi:? 1 + p$J + fl$) = 1. 

We also require a compatibly high-order approximation to the local Green’s 
function; the first 3 terms in our local expansion of the previous section must be 
used. Thus define 

G~*‘(x, ~)-t(h-Iy-Xil)+S~i(ly-Xil-h)(y-Xi) 

+ gz(u; - 2a; + 4bJ( ( y - Xi)2 - iI*) 

+ +j( -U: + 2ai - bj)( y - Xj)‘( 1 y - Xi1 - h). 

Then an O(h4) discretization of (1.1) is given by 

L~*‘[U]j=Oy Y4(xi-I~x,+I)~ 
= ,$)G!*‘(x. y) , I I) ) y~(x~-~,x~+~),i=l,..., n-l, (4.2) 

u,= u,=o. 
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These schemes get very complicated very quickly, and the automated approach of 
the next section is preferred. Also, the discretization error analysis of Section 6 only 
guarantees that the schemes above are O(h) and O(h3), respectively. The stated 
convergence, O(h2) and O(h4), is indeed observed, however, as the numerical data 
below illustrates. The extra order of convergence can be attributed to the oddness 
of the first omitted term of the local expansion for gi(xi, y) in each case and the 
positivity of the inverses of Lj,‘) and Li2). 

Numerical experiments were performed using the discretizations (4.1) and (4.2). 
Below are reported results for the test problem 

2 4 --fl+- - 
x+1 u’+(x+1)2~=4x-Y)’ 0 <x, y < 1, 

(4.3) 
u(0) = u( 1) = 0, 

the solution of which is 

u(x)=; (x+ l)“- 
[ &j][(y+1)2-&]T 

o<x< y, 

=;[(Y+l)2-&3][(x+l)4-&], y<x<l. 

The computations were done on a CDC 6600 in single precision arithmetic 
-equivalent to about 14 decimal digit accuracy. Uniform mesh spacings of h = +, 
$ -L were used with the singular point y located at y = 0.75 (which is always a )...) 1024 

mesh point) for one test and y = $= 0.777... (which is never a mesh point) for 
another. The approximate rate of convergence, p, was computed from the formula 
~=~~~~~ll~~llm/ll~h~~IIoo~ (see Table I). 

Notice that the stated convergence rates are more clearly observed in the case 
where the singular point y is a mesh point. In the test where y = 0.777..., the con- 
vergence is a bit more erratic. This is due to the fact that the relative position of the 
singular point in a mesh subinterval changes as the mesh is refined, altering slightly 
the asymptotic error constants in the local expansion. The high-order convergence 
is still detectable. 

5. HIGH-ORDER SCHEMES 

Because of the complexity that these explicit discretizations rapidly acquire, we 
are led to consider simpler techniques for achieving higher order and accuracy. 
Methods such as deferred corrections or extrapolation suggest themselves. With an 
eye towards applications in higher dimensions, however, we analyze instead an 
automated procedure that computes higher order discretizations numerically 
(rather than evaluating them from explicit closed form expressions for the difference 
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TABLE I 

Maximum Discretization Error and Approximate Rate of Convergence 

h llehll m P II4 II P llehllm P llehll e P 

Scheme (4.1) Scheme (4.2) 

y = 0.15 y = 0.771... y = 0.75 y = 0.771... 

l/4 0.66( - 2) 2.0 0.87( -2) 

118 0.16( -2) 2.0 0.28( - 2) 
l/16 0.41( -3) 2.0 0.88( -3) 
l/32 O.lO( -3) 2.0 0.14(-3) 
l/64 0.25( -4) 2.0 0.47( - 4) 
l/128 0.64( - 5) 2.0 0.15( -4) 
l/256 0.16(-5) 2.0 0.23( - 5) 
l/512 0.40( -6) 2.0 0.75( -6) 
l/1024 0.99( - 7) 2.0 0.23( - 6) 

1.6 0.29( -3) 4.0 0.44( -3) 
1.7 0.18(-4) 4.0 0.40( -4) 
2.1 O.ll(-5) 4.0 0.35( -5) 
1.6 0.71(-7) 4.0 0.12(-6) 
1.7 0.44-8) 4.0 O.ll(-7) 
2.6 0.28( -9) 4.0 0.92( - 9) 
1.6 0.17( - 10) 4.0 0.30( - 10) 
1.7 O.lO(-11) * 0.27(-11) 

* * 

3.4 
3.5 
4.9 
3.5 
3.6 
4.9 
3.5 
* 

Note. For discretizations (4.1) and (4.2) applied to test problem (4.3) with singular points y=O.75 
and y = 0.777... 

coefficients). With this approach it is possible to compute a discrete approximation 
to the solution of (1.1) of any prescribed order of accuracy. 

A general approach to constructing high-order difference approximations to dif- 
ferential equations is analyzed by Lynch and Rice, who refer to the technique as the 
HODIE method (high order differences via identity expansion) in [S] and by 
Doedel in [2]. To discretize a regular problem like 

Uul(x) =.0x) 

involving a second-order, linear, differential operator L, one seeks (on the ith sub- 
interval) a scheme of the form 

Here ti,, ,..., tit., are distinct auxiliary (HODIE) points, some of which may coincide 
with mesh points, and fii,i ,..,, fii,J satisfy the normalization 

/?jJ + ... +B;,J= 1. 

The difference coefficients and weights are determined so that the scheme is exact 
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on some suitable collection of local approximating functions (usually polynomials) 
in the sense that the truncation error, given by 

is zero for all functions 4 in the specified class. 
It is a consequence of the results in [2 and 81, that if one uses J auxiliary 

evaluation points, then one can construct a scheme exact on polynomials of degree 
at most J+ 1 and achieve a local truncation error of at least O(hJ). Thus it is 
possible, given any positive p, to construct the coefficients of a finite-difference 
scheme (Lh, I,,) that is consistent with the differential operator L of order O(hP). To 
complete our discretization of (l.l), we require for those subintervals that contain 
the singular point y a high-order approximation to the local Green’s function 
gi(xi, y). This can be achieved by using this same general approach on a slightly 
modified local problem (obtained by subtracting the known leading order part of 
the Green’s function). Here it is easier to view this as a local collocation procedure, 
as this whole approach to finite differences can be viewed (cf. [3]). 

Let (xi-, , xi+ 1) be a singular subinterval, so that y E (xi- i, xi+ i). Let g denote 
the local Green’s function gi(xi, .) regarded as a function of its second variable, so 
that g(x) z gi(xi, x) for all x E (xi- I, xi+ 1). Then g satisfies 

Now we know from Section 3 that g admits an expansion of the form 

g(x) = hgl(x) + h2g2(x) + . . ., 

where gi(x) = (h - (x - xil)/2h and g,, g,,... are higher and higher order piecewise 
polynomials with knots at x = xi. 

Define the difference u E g - hg, . Then u satisfies a regular problem of the form 

L+Cm4 = -~~+L-g11(4, xi-1 <X<Xi, xj<x<xi+I, 
U(Xj- 1) = u(xj+ ,) = 0. 

Here the right-hand side is a piecewise continuous function with a single (jump) 
discontinuity at x = Xi. Define the local approximating functions pk and qk by 

= 0, Xi<X<Xi+l, 
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and 

qk(x) = 03 xi-, 6X6X,, 

=-2 XiGx<X,+j. 

We then seek an approximation to o of the form 

u&)=c-l. 2h 
h-(=xi)+C l.(X-xi)+h 

2h + c2 PAX) + . . . + cm P,(X) 

+ d,q,(x) + . . . + 4nq,(x) 

determined by the collocation conditions 

Lt[vtnl(5j)= -fLtCh-lx-xill(5~), j = l,..., 2m - 2 
(5.1) 

We then accept hg,(y) + u,(y) as our approximation to the desired value gi(xi, y). 
If the collocation points 5, ,..., rzm _ 2 satisfy a certain distribution requirement, and 
if h is sufficiently small, then the system (5.1) uniquely determines v, and we obtain 
an O(hm+’ ) approximation to the local Green’s function gi(xj, .) uniformly on 
[Xi-. 13 xi+ I 1. We have the following. 

THEOREM 5.1. Let the collocation points tl,..., <2mp2 in (5.1) be given by tj= 
xi + hrj, j = l,..., 2m - 2, where r, ,..., fzrn ~ 2 are independent of h and satisfy 

-l&< .” <Tm”,,<O<& ... <4”2mP2<1. 

Let G,h denote the subspace of C1[xi-,, x~+~] that consists of piecewise 
polynomials of degree at most m with single knot at xi and vanishing at xiel and 
X ,+ , . Then for all h sufficiently small, the local collocation system (5.1) possesses a 
unique solution and defines a projection, P,, onto pm,h that satisfies 

for all sufficiently smooth u vanishing at xi- 1 and xi+, . 

Proof If we order and scale the equations of (5.1) according to 

V,(Xj- ,) = 0 

4?l(xi+,)=O 

h2~t[U,](Sj)=h2Lt[-Kh-J~-xil)](~j)Eh2F(~j), j= l,..., 2m - 2, 
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then we get a 2m by 2m system of the form A,c = d, where 
I 

and 

c-(cc,, Cl 1 c2 )...) c, ’ , b,..., dm)=, 
I I 

d= (0,O ( h*F(&) ,..., h2F(<,,~,) i h2F(4,) ,..., h2F(S2m.-2))T, 

i 

12 I O(l) ) O(l) 
----------- ----- 

A,= O(h) ! B,,+O(h) / 0 
--I-‘---_ -.------ 

0th) / 0 ; Bm.2 + 0th) i 

where I2 is the 2 x 2 identity and B,,, and B,,, are (m - 1) by (m - 1) matrices with 
rows 

C-2, -3.2.5; -4.3.?;,..., -m(m- 1) fy-‘] 

j = l,..., m - 1, and j = m,..., 2m - 2, respectively. These last 2 matrices are non- 
singular because they are column equivalent to transposes of Vandermonde 
matrices. It follows that A, is nonsingular for all h sufficiently small and that there 
exists a constant K independent of h such that 

llA,‘ll, GK as h -+O. 

We can bound the projection operator P, pointwise as follows. For sufficiently 
smooth v we have 

IIPm[u]IIoo= max c-,.~-(;~-~~)+ ... + dmqm(x) x,-l<X<X,Cl 

6 llcll m { ~~h-(;;xi)(l,+ ... + l14mllo} 

<2m IIA;‘dll, 

<2mKh2 lILt[olll,. 1 

We define our approximate local Green’s function then as 

Gm,i(xi, Y) = 4th - IY - xii I+ G,(Y). 

THEOREM 5.2. Let m be an integer greater than 1, and let the approximate local 
Green’s function G,,i be defined as above, where v, is computed by the local 
collocation scheme (5.1). Let gi denote the true local Green’s function as defined in 
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(2.3). Then for sufficiently smooth coefficient functions a and b and for all h suf’ 
ficiently small, we have 

II gi(x;, .I - G,,i(xi, . III cc d Ch” + ‘9 

where C is a constant that does not depend on h. 

Proof: Recall from Theorem 3.1 that for a and b sufficiently smooth, gi(xj, . ) 
admits the local expansion (in unstretched coordinates) 

gi(Xi, XI =hg,(x) + . . . + h”g,(x) + r,(x; h), 

where g2,..., g, are C’ piecewise polynomials with knots at xi and r,,, satisfies (for h 
sufficiently small) 

We get that 

II g;(x, > .I - Gm,i(xi, . Ill m = lItI- Pm) 4 oo 

= ll(~-P,) rmlloc 

6 llrmll m + IIP,[r,l II m 
<Chm+’ + (2mW h2 IILt Cr,l II m 
<C’hm+l. 1 

Notice that in the case m = 1, there is no collocation to do. We just accept as our 
approximate local Green’s function the leading term 

GI,,(x,, Y) E i(h - I Y - Xii 1. 

This gives us an O(h2) approximation to g,(xi, .), and the conclusion of the 
theorem remains valid. 

Given the coefhcients cli,_, , E~,~, and cq,, i = l,..., n - 1, of a finite-difference 
scheme that is consistent with L, and given a choice for m and the approximate 
local Green’s function computed as above, we define our discretization of (1.1) by 

ai,-l Ui~~+cli,OU,+clj,~Uj+~=O, Y$(xi-l~xr+*)~ 
(5.2) 

= ~i,0Grn,i(Xi, Y )Y YE(Xi-l,Xi,,). 

Below are reported the results of numerical experiments run on the test problem 
(4.3) exhibiting convergence rates of 5 and 6. The finite-difference coefficients were 
computed using the regular identity expansion approach discussed at the beginning 
of this section and analyzed in [2 and 81. The approximate local Green’s function 
was computed using the collocation procedure analyzed above with m = 5 and 6 
(see Table II). 
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TABLE II 

Maximum Discretization Error and Approximate Rate of Convergence 

m=5 m=6 

y = 0.75 y = 0.77... y = 0.75 y = 0.77... 

h IlehlL P lIehllm P IM, P llehllm P 

l/4 0.15( -2) 4.6 O.lO(-3) 4.6 0.68( - 3) 5.6 0.23( - 4) 4.4 
l/8 0.61( -4) 4.8 0.41(-5) 2.8 0.14( -4) 5.8 O.ll(-5) 3.9 
l/16 0.22( - 5) 4.9 0.61( -6) 3.5 0.25( - 6) 5.9 0.72( -7) 4.5 
l/32 0.74( - 7) 5.0 0.55( -7) 5.2 0.43( -8) 5.9 0.31(-S) 6.2 
l/64 0.24( - 8) 5.0 0.15(-S) 5.5 0.70( - 10) 5.6 0.44( - 10) 5.8 
l/l28 0.77( - 10) 4.1 0.33( - 10) 4.0 0.15(-11) 0.78( - 12) 
l/256 O&q-11) 0.20(-11) * * 

Note. For discretization (5.2) with m = 5 and 6 applied to test problem (4.3) with singular points 
y = 0.75 and y = 0.777... 

Notice that the observed discretization error in each case is one order higher 
than we would initially expect: IIgi(xj, .)- G,,i(xi, .)ll, = O(ZP+l) and Q,= 
O(k2) imply a contribution to the local truncation error of 0(/P-‘), not O(hm). 
This higher order is due to the fact that the lower truncation error is contributed at 
a finite (2 at most) number of points. Convergence of the scheme at the observed 
rate is rigorously established in the next section. 

6. DISCRETIZATION ERROR 

We can handle the reduced order of the truncation error at a finite number of 
points if we use a stability result involving a mesh l-norm, instead of the usual 
a-norm. Thus, let us define the norm 11. II h,l for mesh functions on our uniform 
mesh by 

n-l 

Il~llh,l = h c M-d. 
i= I 

If (Lh, I,,) is a compact finite-difference scheme of the form (2.4) that is consistent 
with L, then it is a consequence of results in Esser [S, Theorems 3.2 and 3.41 that 
for all h sufficiently small and for all mesh functions 4, we have 

11~11, G cwhc~lIIh,* + kw)l + ld(1)1>> (6.1) 

where C is a constant that does not depend on h. Actually, the notion of con- 
sistency used in [S] is the usual one (involving llLh[cj] - L[q5]11,, but this is 
implied by the notion used here (which involves jlLh[cj] -Zh[L[d]]ll ,), since 



488 EUGENE C. GARTLAND, JR. 

Z,[L[b]] = L[b] + O(h). With the above stability estimate, we can now prove the 
following. 

THEOREM 6.1. Let m be a given positive integer. Let (L,,, I,,) be a compact finite- 
difference approximation of the form (2.4) that is consistent of order m with the dif- 
ferential operator L of (1.1). Let the approximate local Green’s functions G,,i(xi, . ) 
be computed from the local collocation procedure (5.1). Then for sufficiently smooth 
coefficient function a and b and for all mesh spacings h sufficiently small, there is a 
constant C independent of h such that the discretization error e,- u(x,)- U,, 

i = O,..., n, satisfies 

llell m 6 Ch”. 

Proof: If (x,_ i, xi+ ,) is not a singular subinterval (i.e., if y $ (xi-, , xi+ i)), then 
the truncation error r, is given by 

~i~Lh[el,=L~[ull-Lh[~lr 
= LhC”li-rhCLCulli~ 

and this is O(F), uniformly in i, by the assumed order of consistency of the linite- 
difference scheme. If (x, -. I) xi + I ) is a singular subinterval, then 

zi= Lh[elj= Lh[uli- Lh[U]; 

+ g;(xi, Y) - G,,i(x,, Y) > 

where a:-i and @;I are the optimal difference coefficients of (2.3). In this case, we 
have 

+ z-a:1 Ilullm+ IIgi(xi, .)-Gm,l(xi, ~)lIm}. 
I, I 

And it follows from Proposition 2.1 and Theorem 5.2, that ri is O(h”-I). We 
therefore have that the discretization error ei satisfies 

lLh[elil = lzil 6 Ch”, Y4(Xi-l3Xi-t’) 
< Ch”-‘, YE(Xi-l,Xi,l) 

e, = e, = 0. 
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And we obtain from the stability estimate (6.1) that for h sufficiently small 

for some constant C independent of h. 1 

The observed convergence rates are thus proved. In certain special cases, a higher 
order (usually only 1 order higher) can sometimes be observed due to symmetries 
or error cancellation effects, as was observed at the end of Section 4. 
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